a2 United States Patent

Kokrady et al.

US009158683B2

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

MULTIPORT MEMORY EMULATION USING
SINGLE-PORT MEMORY DEVICES

Inventors: Aman A Kokrady, Mayur Vihar Phase
(IN); Shahid Ali, New Delhi (IN); Vish
Visvanathan, Chennai (IN); Vinod
Joseph Menezes, Bangalore (IN)

TEXAS INSTRUMENTS
INCORPORATED, Dallas, TX (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 626 days.
Appl. No.: 13/571,343

Filed: Aug. 9, 2012

Prior Publication Data

US 2014/0047197 Al Feb. 13,2014

Int. CL.
GO6F 12/06
G11C 8/16
U.S. CL
CPC GO6F 12/06 (2013.01);, G11C 8/16 (2013.01);
YO02B 60/1225 (2013.01)
Field of Classification Search
CPC i GOGF 12/06; G11C 8/16
See application file for complete search history.

(2006.01)
(2006.01)

US 9,158,683 B2
Oct. 13, 2015

(56) References Cited
U.S. PATENT DOCUMENTS
7,957,209 B2 6/2011 Ruckerbauer
2006/0012603 Al 1/2006 Lindholm et al.
2007/0073981 Al 3/2007 Imet al.
2007/0150667 Al 6/2007 Bains et al.
2008/0189467 Al 8/2008 Ikeda et al.
2011/0310691 Al* 12/2011 Zhouetal. 365/230.03

* cited by examiner

Primary Examiner — Aracelis Ruiz

(74) Attorney, Agent, or Firm — John R. Pessetto; Frank D.
Cimino

57 ABSTRACT

A multiport memory emulator receives first and a second
memory commands for concurrent processing of memory
commands in one operation clock cycle. Data operands are
stored in a memory array of bitcells that is arranged as rows
and memory banks. An auxiliary memory bank provides a
bitcell for physically storing an additional word for each row.
The bank address portion of each of the first and second
memory commands is respectively translated into a first and
second physical bank address. The second physical bank
address is assigned a bank address of a bank that is currently
unused in response to a determination that the bank address
portions are equal and the bank associated with the first bank
address is designated as a currently unused bank for subse-
quently received memory commands in response to the deter-
mination that the bank address portions are equal. Simulta-
neous read and write operations are possible.

20 Claims, 19 Drawing Sheets

100
/
/T 110 COMPUTING
/ DEVICE
/ |AET—5| 128 131
/ / /
/ 10 | | NETWORKED
/ PORT DEVICES
/
132 4 RAM
W 112
e MULTIPORT
~ t MEMORY
4 Cﬂ EMULATOR
SEE N
114 136
\
o
\
bevce STORAGE
\ SOFTWARE
\ APPLICATION
\ N
\ 130
\
A

U.S. Patent Oct. 13, 2015 Sheet 1 of 19 US 9,158,683 B2

100
/
/I 110 comPuTING
/ N DEVICE
// TESTER 128 131
/ /
Vo NETWORKED
PORT DEVICES
RAM
112
\ MULTIPORT
| | | MEMORY
cPU EMULATOR
\
_ 114 136
N N
2\ —] 1
\
RVicE STORAGE
\\ SOFTWARE
\ APPLICATION
\ N
\ 130
\ ————
\

FIG. 1

US 9,158,683 B2

Sheet 2 0f 19

Oct. 13, 2015

U.S. Patent

“Tnoo

| L~ |
Xne
— JNVEXNY e ne) Zu vivd
(xne) 73
\
ETIT 4<zoEozooM ove
I T (1) Zm /
(1) z3 -
juegajoHAud P
yueglim
v el ENZM | 39vis 21901 B VL
- (e¢Wz3 | aNn3did $S300¥d yueglmhyg | 9N 001 .
: - sueghimpy
g EEELALC h e yueghwputud F 4
(0) zm i Mo Cup
— 0NV -
0z3
AYOWIN LYOd-I1ONIS -)
va , y /ﬂ | Moump
702 0Lz 0z¢ 0ee c0¢
ol DI

U.S. Patent Oct. 13, 2015 Sheet 3 of 19 US 9,158,683 B2

300
313!_ FIG. 3 e 320

:_____MAN M_EﬁoEY_(kEAﬁKE)_____: :_XUELU\R_Y ﬁEMoEY_-:

| 312 34, 322

LN PO P PR

I A 4 I I A I

| I |

| I |

| I |

| n noy n |

| I |

| I |

g o 5

| m m (| m |

L o o e T J

910 900 920

L FIG.9 y 7
[T T M MAIN MEMARY (k RANKSY aar--- T T T T T -1
| g1p MANMEMORY (<BANKS) o | | ENCODEDDATA gpp |
A0 spikt) L] MEMORY |
1 11| Do =My, Myg. My.q0) T
| I |
! |11 Dq=fMgp Myg Myqy) '
I n 000 n I I n I
| | 1] 2™ Mong Minz- Mean) :
| L 1[D_ =f(M, M, o.M,) |
| v . n-1 On-1 " Mn-1" " k-1n-1 v
| I |
| e | - o
L —— i — — N J
WR [d2, 17, b5] RD [d1, 17, bS] RD [d<, (7] WR [d1e\:12€9d4€|>, 7]

/ /

930 940 950 960
. > XOR ENC LOGIC

N
970

US 9,158,683 B2

Sheet 4 of 19

Oct. 13, 2015

U.S. Patent

. Oy
0Er~ v "DIA J
3 1Y . Z ! 0 I-N MOY
3 1)) z ! 0 Z-N MOY
3 1y) Z ! 0 £-N MOY
3 B s Z ! 0 " MOY
) 1) e Z ! 0 " MOY
¥ 1) z) 0 ~ MOY Eomw; 9_”
r MOY"I
3 B) Z ! 0 " MOY ME%_E
A 1) s z ! 0 " MOY
3 B i Z ! 0 " MOY
3 1)) Z ! 0 Z MOY
3 1) e Z ! 0 | MOY
3 B 3 Z ! 0 0 MOY
I10H 1Y A : : z) 0 \
0Zy "1 »nve MNvVE YNvE NvE MNYE YNvVE YNve YNvVE
(uegCim pue yueghauPY) YNVE WOIOOT
o

U.S. Patent Oct. 13, 2015 Sheet 5 of 19 US 9,158,683 B2

500

RECEIVE INPUTS: Rler1Row,
WrZRow, Rd/Wr1Bank, Wr2Bank

510

TableRead v

FETCH 'PhyRd/Wr Bank' FROM THE TABLE
FOR 'Rd/Wr,Row', FETCH 'PhyWr,Bank' AND | ~520
'PhyHoleBank' FROM THE TABLE FOR 'Wr,Row'

PhyRd/Wr,Bank MEMORY_READ FROM 'PhyRd/Wr,Bank

MEMORY_WRITE TO 'PhyWr,Bank'

PhyWrzBank
N
530 YES 540
TableWrite v v MemOP
TABLE_WRITE 'PhyWrZBank' INTO 'HoleBank' MEMORY_READ FROM 'PhdeIWr1Bank'
TABLE_WRITE 'PhyHoleBank' INTO 'WrzBank' MEMORY_WRITE TO 'PhyHoleBank'
/ N
550 560

FIG. 5

US 9,158,683 B2

Sheet 6 of 19

Oct. 13, 2015

U.S. Patent

089+ 9 ‘DI m\;
3 I z) z] 0 | 1-Nmoy
3 1 z z) 0o | zNmoy
¥ I 2 z) 0o | enmoy
¥ 1 z-¥ z] 0 " MOY
3 I o z) 0 * MOY
3 1 z z] 0 “ MOY
3 I z-y z] 0 * MOY
3 1) z] 0 “ MOY
3 I z z] 0 * MOY
oot ¢ 1 z z X 0 Z MOY
3 I 2 z | 0 | MOY
3 1 - z A 0 0 MOY
TI0H =) z . . z] 0
0Zv—"] yNve | dNva | dNve | dNve | yNva | iNve v_z<mJ NVE
/
029

(yuegCm pue yueghimwpy) YNVE TYOIDOT

(moyCipm pue
> moxkimpY)
SMOY

009

US 9,158,683 B2

Sheet 7 of 19

Oct. 13, 2015

U.S. Patent

08w~ _ L DI o\;
3 1) z) 0 |iNwmod | |
3 I z) z) 0 | zNmoy
3 ¥ zy z] 0 | eNmox
y 13 z) z) 0 * MO
3 1y zy z) 0 * MOY
3 1) z] 0 * MOY A;omw\s _gwm
r MOM"I
y 3 2y z] 0 * MOY M;%E
3 ¥ zy z] 0 * MOY
3 I zy z] 0 * MOY
ot 3 » z ¥ 0 2 MOY
3 3 2 | z | 0 L MOY
3 I 2\ z L\ 0 0 MOY
J10H = 2y : . z) 0
0Zv—"] wnve | ¥nva | Nva J WNVE | MNvE | YNve v_z<m_J NV
/ /
_ 0gL 0¢L .
(uegam pue yueghyPa) YNVE OISO X,

004

US 9,158,683 B2

U.S. Patent Oct. 13,2015 Sheet 8 of 19
:3/00
802 804
¢————— CYCLE-1 > CYCLE-2 ———
A Y A Y A
| -820
"~ LOOKUPTABLE LOOKUPTABLE MAIN MEMORY READWRITE
READ & PROCESS WRITE ~ -
~N
~N
~
AN
~N
«— CYCLE- - S CYCLE2————»
~
-
LOOKUP TABLE WRITE
A Y A Y A
_ ™-830
MAIN MEMORY READ/WRITE

LOOKUP TABLE READ & PROCESS

FIG. 8

U.S. Patent Oct. 13, 2015 Sheet 9 of 19 US 9,158,683 B2
1'900
1 OA02 1 0A04 1 OA06
|'<— CYCLE-1 4+—CYCLE-2 —T— CYCLE-3 —»I
WR(a,)) WR(b,l)

A Y A Y A Y
1020
AN .

MEMORY READ MEMORY WRITE MEMORY READ
[WrRow (a,j)] [WrRow (a,j)] [WrRow (b,)]
ENC MEMORY READ ENC MEMORY WRITE ENC MEMORY READ
[WrRow (j)] [WrRow (j)] [WrRow (1)]
FIG. 10
1200
1 2A02 1 2A04 1 2A06
< CYCLE1— »< CYCLE-2— >~ CYCLE-3 —»I
WR(a,) WR(b,) WR(c,n)

A Y A Y A Y
1220
AN

MEMORY WRITE
[WrRow (a,)]

MEMORY WRITE
[WrRow (b,l)]
MEMORY READ MEMORY READ
[WrRow (b_*I)]

[WrRow (a_*,j)]

ENC MEMORY WRITE
[WrRow (j)]

MEMORY READ
[WrRow (c,n)]

MEMORY READ

[WrRow (c_*n)]

ENC MEMORY WRITE
[WrRow (1)]

FIG. 12

U.S. Patent Oct. 13, 2015 Sheet 10 of 19 US 9,158,683 B2

1100

”l‘i FIG. 11 11)20
[T T AN MEMABRY (L RANKGY ar-———-—TTT T -
| 1119 MANMEMORY (BANKS) .\ | | ENCODEDDATA 119 |
| N\ 5P i)y’ 11 MEMORY — ~ |
: ‘ ‘ : : Do =fMgg: Myg- Micqp) ! :
| | 1 Dq={Mgq Mg Micy) |
I n 000 n I I n I
| 1 P2 Mon2 Minz- Mt !
: ' | : : Dpg= Mon 4 My Mcqpg) :
| |1 |
I -t m - -t m - I Iﬁ m > I
L e - S I e S J

WR [d2, 17, b5] RD [d*, 17, b5_] WR [d*0d2, 17]

/ /

1130 1140 1160

| > XOR ENC LOGIC

N
1170

U.S. Patent Oct. 13, 2015 Sheet 11 of 19 US 9,158,683 B2

:300

" FIG. 13 i
T T T MAIN MEMARY (k RANKSY ar-T---- T T T -
| 1aqp MANMEMORY (KBANKS) .0\ | | ENCODEDDATA 139 |
| N\ PO)y 1 MEMORY — ~ |
: I ‘ : : Do = Mg Mg M1g) 1 :
! |1 Dy= Mgy Myg- Micg) |
| n ocoo n 1 n I
| 1] P2 Mon2 Mnz Metn |
| 4 11| Pt Mon g M- Micng) ||
| K |
| -~ -~ | |- - > I
L e — — I J

RD [d6, 12, b4] RD [d*, 12, b4_] RD [@d, r2]

/ /
1330 1340 130 190
RD [d6, 2, b4]

. > | XORDEC LOGIC

N
1370

U.S. Patent Oct. 13, 2015 Sheet 12 of 19 US 9,158,683 B2

1 4A02 1 494 1 496
’;— CYCLE-1 —T— CYCLE-2 ——r— CYCLE-3 ——I
RD(a,) RD(b,) RD(c,n)
A Y A Y A Y
RD(ak) RD(b,m) RD(c,p)

1420 MEMORY READ MEMORY READ
[RdRow (a,))] [RdRow (b))

ENC MEMORY READ ENC MEMORY READ
[RdRow (k)] [RdRow (m)]

MEMORY READ
[RdRow (c,n)]

ENC MEMORY READ
[RdRow (p)]

MEMORY READ MEMORY READ
[RdRow (a_* k)] [RdRow (b_* m)]

MEMORY READ
[RdRow (¢_*p)]

FIG. 14

1510~ RECEIVE INPUTS: Rd 1Row, Rd,Row, Rd,Bank, Rd, Bank

COMPARE

NO MemOP

Rd1 Bank == Rd2 Bank

YES

MemOP ENCread
v Y v
Memory_Read FROM Memory_Read FROM
Memory_Read FROM 'Rd,Bank_*(Rd, Row) 'Rd,Bank(Rd Row)
15507 'RdBank(Rd,Row) Memory_Read FROM 'ENC Memory_Read FROM
memory(Rd , Row)' DECODE 'Rd, Bank(Rd, Row)’

N N
FIG. 15 1560 1540

US 9,158,683 B2

Sheet 13 of 19

Oct. 13, 2015

U.S. Patent

8091
- — = e
_
_
" 0291
" 21907 $S3004d
I | wox (i m
: ¥OX (1) 1 1) (0
[
I \ 4 MLZ (0) 21
| 0% |
[.
| | 8091
I I
|] pzol PaSanhaannhi Nl
“ ocoo = | “
_ 000 o000 o000 |—|
“ ze9L-"T AN [
Ao B> S BN) WX . 00| . D@
I og9L ov9l
| 001 xnv A X N
I 0€9l 0291 0191
e i — — —— — ——— ——— — — —
A 91 "DIA

U.S. Patent Oct. 13, 2015 Sheet 14 of 19 US 9,158,683 B2

—_ o~
~ PP
3 ~
-
o
™
N~
~ -
5
o
<
=
o e oy
2 o\
N~ E
- Q S
o]
o]
— o~
D o~
X N~
~
l\
v— =
. o
©) <
et
o
| &7
N~
b

©)

(m-1)

1712

MAP (0)

(m-1)

US 9,158,683 B2

Sheet 15 of 19

Oct. 13, 2015

U.S. Patent

ﬂ-|| ||
_
_
| 0Z81
" 21901 $S3904d
I =y L L
_ 40X (1) . 1
B
| 098k |
_ _
_ _
_ I
_ S s el S
_
_
_ 000
_
| i
— S L S S S S S
| =7 / HOX (1D . (O HOX (1-D . (OR()
| oggL ov8L 4 g
"v_og XY mige (1) 21 X mzz1 | X
| 0esl ce8l ozgl
e e e e e e e
/ 81 ‘DIA
0081

¥OX (1-)

a o

11

MLz (0) 21

US 9,158,683 B2

Sheet 16 of 19

Oct. 13, 2015

U.S. Patent

¥OX (1)

oo

11

o

MLZ (0) 21

ﬂ|| ||
_
_
" 000 \ g
_ 219017 $S3004d
“ L Il o~ P
| HoX (1D . 1) (0 \\\\ \
A 4 | /0
| 0961 _
_ |
_
_ |
| 17 I N
_
| uin i
" 2e6) .+| !
v k== IR) o A]
| 0661 Ov6l F r
" MOOT XNV mMifez (1) 2 X mipz (1) 21 X
I 06l 026l
e e e e e e e e e e e e e e e e e e o . o — — —— — —— — — — — — — — — — — — ——— — — ———— ——
A 61 ‘DI
0061

US 9,158,683 B2

Sheet 17 of 19

Oct. 13, 2015

U.S. Patent

|~ ¥£0¢

¢s0¢ 0G0¢ 810¢ 9t0¢ ¥0¢
N \ N / /
¥ooig.MAUd ¥oo|gimAud ¥oolgeloHAud 00IGIM OLNI %2018810HAYd ¥oogeloHAud
JAISNI aepdn HOX NOY4 Sum Aiowsy JAISNI 81epdn HOX aum - de a|qe) OLNI SjupmAlowsy
YOIHMAUd 40 o, Hoo|gpyAUd %00Ig98I0HAUd 40 . yooigaloH OLNI YoolgimAud yoolgpyAyd
WOYd peay~Aiowajy WOY4 peay Alowsajy WOYJ pesy Alowsjy oM dep|qeL WOY4 peay Alowaly
A A A A
t dOWsi
ALV SIA SWMEOX SluADIgEL dOwsi
; MO HV
EMOTIM ?02
¥o/gpyAud OLNI ooigimAud
A 2202~ M Alows apisul ajepdn™HOX
¥o0|gpyAud WOUA HOIMAUD 40 .
peay—AloWwap NOXYS peay Alowapy
dOWwsp SJUMNEOX
ooigimAud yooigIMAUd
== 00|gpuAyd =i yooigpyAud
0r0¢ 0€0¢
avawod
(moymuBgIM, HO4 dYIN-T18VL FHL WOYS MooigeloHAYd, ANV JooigimAYd, HOL34
(moypypuegPY, HO4 dYN-319V.L IHL WOM4 XooigpyAud, HOL134 ™-0202
peayelqe, 1
0¢ DId HOOIGIM NHO0IGPY YUBEIM NUBEPY ‘MOYIM ‘MOYPY :SLNANI FAIFOTY ~-0102

US 9,158,683 B2

Sheet 18 of 19

Oct. 13, 2015

U.S. Patent

2s1e 0SLe 12474 rA A
\ \ / /
300230 ANV ¥o0|gzpyAud (Muegzpy)¥ooigzpyAud ¥ooigzpyAud
NOY4 pPeay HOX (yueg|py)xo0igLPHAYd NO¥A peay Aiowspy NO¥A peay Aiowspy
(x uegzpyooigzryiyd NOY4 pesy Mows)y (yueg|py)¥o0igLPYAYd o018 pYAUd
INOY4 peay Aiowsiy WOYA peay Aiowsay WO peay Aowsy
» A A A
pesyyOX dOwWap
vLe S3A dOWsiy
v_cmm7
==)jueg|py ON
¥oo|gzpyiud Ro0igzpyAud
== 008 pyAud =i Yoolg | pPYAYd
ovie 0cle
TUVANOD |
(MOYZPUPIUBEZPY, HO4 dVYIN-T18VL JFHL WOXS Ao0igzpyAud, HD134
Moy | pyued|py, HO4 dYIN-T19VL IHL WOX4 MoolgLpyAYd, HOL34 ~~-0¢le
pesysiqe, |
¥oo|gzPY YooigLpy “uegzpy NuedlLpy ‘MoYZPY ‘MOYLPY :SLNdNI IAIFOTY ~0LLZ

1 "DIA

US 9,158,683 B2

Sheet 19 of 19

Oct. 13, 2015

U.S. Patent

444 TASTAA 06¢c 8vec ovee yvee
\ \ \ / / /
¥o0/gzZiMAud ¥oo/gzZimAud ¥00/gz8IoHAYd yooigLImAud ¥00|gZ!M OLNI X00igZ8loHAYd ¥oo|gzaloHAYd
JAISNI 81epdn"HOX OLNI SMAiowsy JAISNI 8lepdn™HOX JAISNI 81epdn"HOX suM de s|qeL OLNI 8lup~Aiowspy
%00|9ZIMAUd 40 ooig LimAud %00/9Z810HAUd 40 . ¥oigLIMAUd 40 . %00/92810H O LNI %0019zIMAud Yoolg}MAUd
NOY4 peey AMowspy | | OLNI MM Aows | | NOY4 peey Alowsp | | WOY4 peay Aiowapy aum dealqe] OLNI SmAtowsy
» A A A A A
SJUMHOX dOwap
BUMHOX SUMHOX aumaIgeL dOwWsl
VA /A4 S3A
>>om7
== MOY IM ON
ooigzimAud JAISNI 8jepdn™HOX ¥ooigz:mAUd OLNI
$€22~ ¥ooig LimAud JAISNI alepdn~HOX aum Aoway
yoigzimAud 40 ., NOY4 peay Aowspy ¥ooigLMAYd OLNI
¥ooigLmAud 40 ., INO¥4 peay Aowsiy aum Aowsy
t F Y
AUMYOX doway TAS A4
yooigzimAud yooigzimAud
== Yoo|g LJMAUd =i Y0018 LIMAud
0vee 0gee
VWO |
(MONZIMMUBEZIM, HO4 dYIW-T18VL THL WOYS H00IgZ8IoHAUd, ANV M00I92iMAUd, HOLT4
0gee | (MmoyLImMuEg LIM, HO4 dYIN-T18VL IHL WONHA 20019 MmAUd, HO134
peayjaiqe) |
01221 300[GZIMHOOIE LIM HUBGZIM HUBHLIM ‘MOHZIM ‘MOY LIM :S1NdNI FAIFOIY ¢C 'DIA

US 9,158,683 B2

1
MULTIPORT MEMORY EMULATION USING
SINGLE-PORT MEMORY DEVICES

BACKGROUND

Electronic devices include a wide variety of processors
such as application specific integrated circuits (ASIC), digital
signal processors (DSP), and microprocessors that use
memory devices to store and retrieve information, for
example. Very large scale integration (VLS]) circuits (e.g., on
the scale of billions of transistors) often include multiple
processors that each access and process information that is
stored in memory devices that are shared by the multiple
processors. The shared memory devices often include
memory cells (e.g., bitcells) having multiple ports (e.g., mul-
tiport memories) so that the memory devices (and the infor-
mation stored therein) can be accessed more quickly.

However, implementing multiport memories using space
and/or time multiplexing typically requires a greater amount
alayout space, increased power, decreased bandwidth, and/or
combinations thereof. Space-multiplexing multiport memo-
ries, for example, are arranged using a multiplexor that is
arranged to receive requests for first and second ports and to
alternate sending the request to a memory. Time-multiplexing
multiport memories, for example, are arranged using first and
second memories that are arranged to respectively receive
requests for first and second memories and a multiplexor that
is arranged to alternate output the output of each of the first
and second memories.

The space-multiplexing approach typically entails using a
larger bitcell (e.g., using eight or more-transistors). The (lay-
out) area of each multiport bitcell typically increases expo-
nentially with the number of ports in the bitcell, which results
in exponentially greater space requirements for greater num-
bers of ports in a bitcell. Space-multiplexing typically allows
the multiport memory to run at frequencies close to that of a
single-port memory. Thus, space-multiplexed memories
often use twice the area of, offer similar performance to, and
consume twice the power of a single-port memory.

The time-multiplexing approach includes using single-
port memories that are coupled to arbitration and priority
sequencing logic to avoid bank contentions. Individual port
requests for a single-port memory are prioritized and are
sequentially sent in time to the single-port memories. The
serialization of the individual port requests results in lower
frequencies of operation and higher cycle latencies since the
single-port memories are accessed sequentially in time. Mul-
tiport memories using time-multiplexing typically have a lay-
out area that is comparable to the size of the layout area of
single port. Thus, time-multiplexed memories often use a
similar amount of area as, offer half the performance of, and
consume a similar amount of the power of a single-port
memory.

A third approach for implementing multiport memories
provides using first and second inputs ports as well as using
first and second output ports for a single bitcell such as an
“8T” (eight-transistor) bitcell. The multiple-input and mul-
tiple-output memories often use twice the area of, offer less
performance than, and consume more power than a single-
port memory.

SUMMARY

The problems noted above are solved in large part by a
multiport memory emulator that receives a first and a second
memory command for concurrent processing of memory
commands in one operation clock cycle. Concurrent process-

10

15

20

25

30

35

40

45

50

55

60

65

2

ing of both read and write commands is supported by a two-
level architecture when the command types of the first and
second memory commands are both read command types, are
both write command types, or are both different command
types. Data operands are stored in a memory array of bitcells
that is arranged as rows and memory banks An auxiliary
memory bank provides a bitcell for physically storing an
additional word for each row. The bank address portion of
each of the first and second memory commands is respec-
tively translated into a first and second physical bank address.
The second physical bank address is assigned a bank address
of'a bank that is currently unused in response to a determina-
tion that the bank address portions are equal and the bank
associated with the first bank address is designated as a cur-
rently unused bank for subsequently received memory com-
mands in response to the determination that the bank address
portions are equal.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an illustrative computing device in accor-
dance with embodiments of the disclosure;

FIG. 2 is a logic diagram illustrating a logically addressed
multiport memory emulator in accordance with embodiments
of the disclosure;

FIG. 3 is a logic diagram illustrating the physical banks of
a single-port memory of a logically addressed multiport
memory emulator in accordance with embodiments of the
disclosure;

FIG. 4 is a logic diagram illustrating a lookup table for an
logically addressed emulator single-port memory array in
accordance with embodiments of the disclosure;

FIG. 5 is a flow diagram illustrating a process for concur-
rently accessing two ports of a logically addressed multiport
memory emulator in accordance with embodiments of the
disclosure;

FIG. 6 is a logic diagram illustrating the state of a lookup
table of an logically addressed emulator single-port memory
array after a first update to the logic table in accordance with
embodiments of the disclosure;

FIG. 7 is a logic diagram illustrating the state of a lookup
table of an logically addressed emulator single-port memory
array after a second update to the logic table in accordance
with embodiments of the disclosure;

FIG. 8 is a timing diagram that illustrates access cycles of
a logically addressed multiport memory emulator in accor-
dance with embodiments of the disclosure;

FIG. 9 is alogic diagram illustrating the physical banks and
an encoded data bank of a single-port memory of a multiport
memory emulator for simultaneously processing parallel read
operations from the same bank in accordance with embodi-
ments of the disclosure;

FIG. 10 is a timing diagram that illustrates the memory
operations of FIG. 9 in accordance with embodiments of the
disclosure;

FIG. 11 is a logic diagram illustrating the physical banks
and an encoded data bank of a single-port memory of another
multiport memory emulator for simultaneously processing
parallel read operations from the same bank in accordance
with embodiments of the disclosure;

FIG. 12 is a timing diagram that illustrates the memory
operations of FIG. 11 in accordance with embodiments of the
disclosure;

FIG. 13 is a logic diagram illustrating the physical banks
and an encoded data bank of a single-port memory of another
multiport memory emulator for simultaneously processing

US 9,158,683 B2

3

parallel read operations from the same bank in accordance
with embodiments of the disclosure;

FIG. 14 is a timing diagram that illustrates the memory
operations of FIG. 13 in accordance with embodiments of the
disclosure;

FIG. 15 is a flow diagram illustrating a process for concur-
rently reading two ports of a logically addressed multiport
memory emulator in accordance with embodiments of the
disclosure;

FIG. 16 is a logic diagram that illustrates a full dual read
and write architecture multiport memory emulator in accor-
dance with embodiments of the disclosure;

FIG. 17 is a logic diagram illustrating a lookup table 1700
for a level-two logically addressed emulator single-port
memory in accordance with embodiments of the disclosure;

FIG. 18 is alogic diagram that illustrates simultaneous read
operations in a full dual read and write architecture multiport
memory emulator in accordance with embodiments of the
disclosure;

FIG. 19 is a logic diagram that illustrates simultaneous
write operations in a full dual read and write architecture
multiport memory emulator in accordance with embodiments
of the disclosure;

FIG. 20 is a flow diagram illustrating a process for concur-
rently reading and writing two ports of a logically addressed
multiport memory emulator in accordance with embodiments
of the disclosure;

FIG. 21 is a flow diagram illustrating a process for concur-
rently reading two ports of a logically addressed multiport
memory emulator in accordance with embodiments of the
disclosure; and

FIG. 22 is a flow diagram illustrating a process for concur-
rently writing two ports of a logically addressed multiport
memory emulator in accordance with embodiments of the
disclosure.

DETAILED DESCRIPTION

The following discussion is directed to various embodi-
ments of the invention. Although one or more of these
embodiments may be preferred, the embodiments disclosed
should not be interpreted, or otherwise used, as limiting the
scope of the disclosure, including the claims. In addition, one
skilled in the art will understand that the following descrip-
tion has broad application, and the discussion of any embodi-
ment is meant only to be exemplary of that embodiment, and
not intended to intimate that the scope of the disclosure,
including the claims, is limited to that embodiment.

Certain terms are used throughout the following descrip-
tion—and claims—to refer to particular system components.
As one skilled in the art will appreciate, various names may be
used to refer to a component. Accordingly, distinctions are not
necessarily made herein between components that differ in
name but not function. In the following discussion and in the
claims, the terms “including” and “comprising” are used in an
open-ended fashion, and thus are to be interpreted to mean
“including, but not limited to” Also, the terms “coupled
to” or “couples with” (and the like) are intended to describe
either an indirect or direct electrical connection. Thus, if a
first device couples to a second device, that connection can be
made through a direct electrical connection, or through an
indirect electrical connection via other devices and connec-
tions. The term “concurrently” means overlapping, which
includes simultaneous and nearly simultaneous events, such
as events occurring within (or overlapping with) a current
operation cycle.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 1 shows an illustrative computing device 100 in accor-
dance with embodiments of the disclosure. For example, the
computing device 100 is, or is incorporated into a computing
device such as a mobile device 129, a personal digital assis-
tant (e.g., a BLACKBERRY® device), a personal computer,
automotive electronics, projection (and/or media-playback)
unit, or any other type of electronic system using electronic
memory.

In some embodiments, the computing device 100 com-
prises a megacell or a system-on-chip (SoC) which includes
control logic such as a tester 110, a CPU 112 (Central Pro-
cessing Unit), and a storage 114. The CPU 112 can be, for
example, a CISC-type (Complex Instruction Set Computer)
CPU, RISC-type CPU (Reduced Instruction Set Computer),
or a digital signal processor (DSP). The storage 114 (which
can be memory such as on-processor cache, off-processor
cache, random access memory, flash memory, or disk storage)
stores one or more software applications 130 (e.g., embedded
applications) that, when executed by the CPU 112, perform
any suitable function associated with the computing device
100. The CPU 112 can include (or be coupled to) RAM
(random access memory) 134, which can be static or dynamic
RAM arranged in a common (or separate) substrate. RAM
134 includes a multiport memory emulator 136 that is used to
emulate multiport memories by using, inter alia, single-port
memories as disclosed herein below.

The tester 110 is a diagnostic system and comprises logic
(embodied at least partially in hardware) that supports moni-
toring, testing, and debugging of the computing device 100
executing the software application 130. For example, the
tester 110 can be used to emulate one or more defective or
unavailable components of the computing device 100 to allow
verification of how the component(s), were it actually present
on the computing device 100, would perform in various situ-
ations (e.g., how the component(s) would interact with the
software application 130). In this way, the software applica-
tion 130 can be debugged in an environment which resembles
post-production operation.

The CPU 112 comprises memory and logic that store infor-
mation frequently accessed from the storage 114. The com-
puting device 100 is often controlled by auser using a Ul (user
interface) 116, which provides output to and receives input
from the user during the execution the software application
130. The output is provided using the display 118, indicator
lights, a speaker, vibrations, image projector 132, and the like.
The input is received using audio and/or video inputs (using,
for example, voice or image recognition), and mechanical
devices such as keypads, switches, proximity detectors, and
the like. The CPU 112 and tester 110 is coupled to 1/O (Input-
Output) port 128, which provides an interface (that is config-
ured to receive input from (and/or provide output to) periph-
erals and/or computing devices 131, including tangible media
(such as flash memory) and/or cabled or wireless media (such
as a Joint Test Action Group (JTAG) interface). These and
other input and output devices are selectively coupled to the
computing device 100 by external devices using wireless or
cabled connections.

The multiport memory emulator 136 is arranged to emulate
multiport memories by using a lookup table to translate logi-
cal addresses into physical addresses for selecting bitcells.
The multiport memory emulator 136 provides the perfor-
mance of multiport memory operation while maintaining a
minimal impact on area, the frequency of operation, and
power consumption. Thus, the multiport memory emulator
136 can be arranged as large (or small) multiport memories
having with an area and frequency of operation close to those
of single port memories.

US 9,158,683 B2

5

FIG. 2 is a logic diagram illustrating a logically addressed
multiport memory emulator 200 in accordance with embodi-
ments of the disclosure. Multiport memory emulator 200 is
dual-port memory emulator and thus is an example of the
multiport memory emulator 136 described above (which is
arranged having two or more ports). Multiport memory emu-
lator 200 includes an input buffer 202 that is arranged to
receive two memory commands (for example, such as two
memory commands for a dual-port memory emulator). The
two memory commands provide data and a first and second
logical address for addressing memory within emulator
single-port memory 210. The memory is arranged to concur-
rently process the first and second memory commands in
response to the asserted row portions of the first and second
memory commands and the asserted first and second physical
bank addresses. Each of the memory commands is associated
with a command type, such as a “read operation” or a “write
operation.”

Single-port memory (device) 210 is arranged as banks of
rows of memory (see, FIG. 4, for example). An auxiliary bank
is provided to provide an initial “hole” (e.g., an open memory
word at a memory location that is not currently associated
with a logical address) that is used to provide relatively imme-
diate access to memory for the second memory operation.
(Additional holes are provided for additional ports in embodi-
ments of three-or-more-port memory emulators.)

Each bank is selected in response to an, albeit indirect,
bank portion of a received address of each of the received
memory commands. A row within each bank is selected in
response to a row portion of a received address of each of the
received memory commands. Emulator single-port memory
210 is coupled to an output buffer 204 that is arranged to
output the data of the selected row and bank of emulator
single-port memory 210.

Pipeline stage 220 is coupled to emulator single-port
memory 210 and is arranged to provide signals for selecting
banks and rows of the emulator single-port memory 210 in
response to the received memory commands. More particu-
larly, pipeline stage 220 is arranged to assert the row portions
of'the first and second memory commands and assert the first
and second physical bank addresses. For example, pipeline
stage 220 is arranged to pipeline enable signals and write
signals for operations for processing each memory command
by sequentially asserting the row and bank address for a first
memory operation followed by the row and bank address for
the second memory operation.

Enable signals EZ(0), EZ(1), . . . , EZ(k-2), EZ(k-1), and
EZ(aux) are provided to enable a row and a physical bank that
are selected in response to the row portion of the received
address for a memory operation and an indirection (e.g.,
logical to physical translation by lookup table) of the bank
portion of the received address for a memory operation.
Enable signals are first asserted for the first memory opera-
tion, and then are secondly asserted for the second memory
operation (discussed below with reference to FIG. 5).

Write signals WZ,(0), WZ(1), ..., WZ(k-2), WZ(k-1),and
WZ(aux) are provided when a write operation is indicated.
When a write operation is indicated, a row and a physical
bank that are selected in response to the row portion of the
received address for a write memory operation and an indi-
rection (e.g., logical to physical translation by lookup table)
of the bank portion of the received address for a memory
operation. In the disclosed embodiment the two received
memory commands are write commands or the two received
memory commands are a read and a write command.

Process logic (unit) 230 is arranged to receive the row
address portions of the received memory commands and to

10

15

20

25

30

35

40

45

50

55

60

65

6

receive the physical bank signals as output by the lookup table
240 (as a translation from a logical address to a physical
address). In response to the received signals, the process logic
230 is arranged to provide signals that are adapted to drive the
pipeline stage 220, as well as to provide a “conditional write”
signal to the lookup table 240.

Lookup table 240 is arranged to receive the bank portion of
areceived address of each of the received memory commands
and the row portion of the received address of each of the
received memory commands. The lookup table 240 is
arranged to select a physical bank (including the auxiliary
bank for providing an initial “hole”) of the emulator single-
port memory 210 in response to the received signals.

Lookup table 240 is arranged to determine whether the
bank address portion of the first memory command is equal to
the bank address portion ofthe second memory command and
to translate the bank address portion of each of the first and
second memory commands respectively into a first and sec-
ond physical bank address. In response to the determination
that the bank address portions are equal, Lookup table 240 is
arranged to assign a bank address of a bank that is currently
unused to the second physical bank address and to designate
the bank associated with the first bank address as a currently
unused bank for subsequently received memory commands.

FIG. 3 is a logic diagram illustrating the logically
addressed physical banks of a single-port memory of a mul-
tiport memory emulator in accordance with embodiments of
the disclosure. Physical banks 300 are used to form an array
of memory that includes a main memory 310 and an auxiliary
memory 320. The memory array is arranged as rows and
memory banks, where each memory bank has an associated
bank address and is arranged to physically store one word
from each row. Likewise wherein each row has an associated
row address and is arranged to physically store one word from
each memory bank. The memory array includes an auxiliary
memory bank that is arranged to provide a bitcell for physi-
cally storing an additional word for each row

Main memory 310 includes a total of “k™ banks, where the
main memory 310 includes a first bank 312 of single-port
memories SP(0), intermediate banks of single-port memories
(not shown for clarity of illustration), and a terminal bank 314
of single-port memories SP(k-1). Auxiliary memory 320
includes a single bank 322 of single-port memories SP(k).
The single bank 322 of single-port memories SP(k) is nor-
mally organized in a similar fashion to the banks of main
memory 310.

Banks 312, 314, and 322 (for example) are organized as
words (where each word is illustrated as a rectangular cell)
that each include a series of single-port memories (e.g., bit-
cells) that is “m” bits long. For example, a word can be a byte,
16-, 32-, 64-bit word, or any other length of single-port
memories that is suited for an application. Accordingly, each
word in a memory bank is used to store, for example, a data
operand associated with one of the received memory com-
mands.

Each bank 312, 314, or 322 (for example) includes an “n”
number of the words (as illustrated in a vertical column). Thus
the number of single-port memories in a bank is nxm, the
number of single-port memories in the main memory 310 is
nxmxk, and the number of single-port memories in the main
memory 310 and the auxiliary memory 320 is nxmx(k+1). (In
three-or-more-port memories, additional auxiliary banks are
used, as described above.) The size of lookup table (such as
lookup table 240 where each entry is an address that points to
a physical bank in the table) is nxlog,(k+1)x(k+1).

FIG. 4 is a logic diagram illustrating a lookup table 400 for
a logically addressed emulator single-port memory in accor-

US 9,158,683 B2

7

dance with embodiments of the disclosure. Lookup table 400
includes a table 430 of rows and banks of words of single-port
memories. Table 430 is initialized such that each physical
bank entry of the (non-auxiliary banks) is the same as the
logical address (e.g., such that the lookup table function
returns a value that points to the same physical address that is
the same as the logical address of input). Table 430 includes
“N” rows (e.g., row 0 through row N-1) and is indexed as
illustrated by row indices 410. Table 430 also includes “k+1”
banks (e.g., bank 0 through bank k-1, and bank “hole”) and is
indexed as illustrated by bank indices 420. Thus, the bank
address portion of the received memory command is arranged
to uniquely address each of the non-auxiliary memory banks.

In the illustrated embodiment, two memory commands are
received. A first received command is either a read or a write
(Rd/Wr,) command, while a second received command is a
write (Wr,) command. Addresses that are associated with
each command are partitioned into rows and banks such that
the selected row and bank for the first command are respec-
tively Rd/Wr Row and Rd/Wr,Bank and such that the
selected row and bank for the second command are respec-
tively Wr, Row and Wr2Bank.

As noted above, the physical bank address that is used to
select a bank is determined by, for example, using a portion of
the received memory command as a logical index to the
lookup table, and reading a physical address in response. The
lookup table is updated in response to a bank conflict, for
example, when a read command and a write command “try”
to access the same bank and row at the same time.

When the first command is a read command, the read
command is given priority (and is thus considered as the
“first” command even though the two commands are concur-
rently processed). When a bank conflict is determined, the
datais read from the selected word (as selected by the selected
row and bank); however, the data for the second command is
written into an empty location (“hole,” which is initially pro-
vided by the auxiliary bank) and the lookup table is appro-
priately updated (as discussed below).

FIG. 5 is a flow diagram illustrating a process for concur-
rently accessing two ports of a logically addressed multiport
memory emulator in accordance with embodiments of the
disclosure. Process 500 is initiated in operation 510 when the
inputs Rd/Wr,Row, Wr, Row, Rd/Wr,Bank, and Wr2Bank
are received in association with the two received memory
commands.

The input WrRow element is the row number of the loca-
tion thatis being written, while the RdRow element is the row
number of the location that is being read. A “hole” is (for
example) any unused or blank row in a bank (note: the loca-
tion of the hole for each row moves around in the row as the
row in the table is updated). At any time, the total number of
available holes in the table is equal to “n” (e.g., the number of
rows per bank). For each row: the RdBank is the logical bank
that is implicated by a read command generated by a user
process, the WrBank is the logical bank that is implicated by
a write command generated by a user process, the PhyRd-
Bank is the physical bank that is to be read to retrieve the
required data, and the PhyWrBank is the physical bank in
which the required data is written when there is no physical
bank conflict.

Accordingly, RdBank and WrBank are indexed using a
value that ranges from O through (k-1), and PhyRdBank and
PhyWrBank are indexed using a value that ranges from 0
through k (where “k” is an auxiliary bank that is not neces-
sarily visible to the user or users issuing either of the received
commands).

10

15

20

25

30

35

40

45

50

55

60

65

8

In operation 520, a lookup table read (TableRead) opera-
tion is used to determine (e.g., fetch) the value of PhyRd/
WR,Bank (in response to Rd/Wr;Row), the value of
PhyWr,Bank (in response to Wr, Row), and the value of
PhyHoleBank (in response to Wr, Row). (See outputs of
lookup table 214 in FIG. 2, for example.) Thus, the operation
of Table (RdBank) returns PhyRdBank, the operation of
Table (WrBank) returns PhyWrBank, and the operation of
Table (HoleBank) returns PhyHoleBank (which is the current
physical location of the hole for the selected bank).

In operation 530, the physical bank addresses (PhyRd/
WR,Bank and PhyWr,Bank) are compared to determine
whether the same physical bank is implicated by both the first
and the second received memory command. If the same
physical bank is not implicated by both the first and the
second received memory command (NO), process flow con-
tinues with operation 540. If the same physical bank is impli-
cated by both the first and the second received memory com-
mand (YES), process flow continues with both operations
550 and 560.

In operation 540, memory operations are performed using
differing banks. In the example, a memory read operation is
performed using PhyRd/WR,Bank and a memory write
operation is performed using PhyWr,Bank. Process flow ter-
minates until the next two memory commands are received.
(The case where the two commands are write operations to
different banks is not illustrated.)

In operations 550 and 560, memory operations are (typi-
cally concurrently) performed using differing physical banks
(notwithstanding the fact that the same logical bank is impli-
cated by both received memory commands). Process flow
continues until operations of both operations 550 and 560
finishes, and the process flow terminates until the next two
memory commands are received.

Operation 550 is a table write operation where the data of
the second command (which is a write command) is written
into the current hole in the selected row. The pointers (in the
lookup table) to the current hole and the PhyWr,Bank are
swapped by such that the physical location holding the data
justread (and being effectively overwritten by the concurrent
write to the same logical address) becomes the new hole. (An
example of the swap operation is illustrated below with
respect to FIG. 6 and FIG. 7.) Thus, a table write operation
moves the value of PhyWr,Bank (e.g., the pointer to the
physical bank of the current hole), into “HoleBank™ and the
value of the PhyHoleBank (e.g., the pointer to the next hole)
is moved into the bank pointed to by Wr,Bank.

Operation 560 is a memory-related operation where the
data implicated by the first memory command is read using
the conflicted bank address (e.g., read from PhyRd/
WR,Bank) and the data provided for the second memory
command is concurrently written to the hole (e.g., written to
the physical memory location pointed to by PhyHoleBank).
Thus, both the read and the write to the same logical address
are accomplished without time multiplexing, space multi-
plexing, or providing multiports for each bitcell. As larger
memory arrays are used in the multiport memory emulator,
the size of the footprint area required by the lookup table
(merely) increases at a log, rate, and thus becomes vanish-
ingly smaller in proportion to the sizes of ever-larger memory
arrays.

FIG. 6 is a logic diagram illustrating the state of a lookup
table of a logically addressed emulator single-port memory
array after a first update to the logic table in accordance with
embodiments of the disclosure. Before the first update is
applied to table 430, table 430 is initialized as illustrated in
FIG. 4. Two commands for concurrent access to the emulator

US 9,158,683 B2

9

single-port memory array are received that implicate the same
memory bank (e.g., bank “1” in the illustrated table). Thus,
the first command is initiated for reading from the implicated
bank, and a second command is initiated for concurrently
writing data to a “new” physical location (e.g., the hole in the
bank). Accordingly, the table is updated to logically point to
the “new” physical location.

A “swap” operation is used to update the lookup table to
point to the most-recently stored data and to “free up” the
“stale” data of the location most-recently read from. The
pointer to the current hole and the pointer to the Phy Wr,Bank
are swapped by such that the physical location holding the
data just read becomes the new hole. Thus, a table write
operation moves the value of PhyWr,Bank (e.g., “k,” whichis
the physical bank of the newly stored data and the “old” hole),
into “HoleBank™ at location 620 and the value of the Phy-
HoleBank (e.g., “1,” which is the physical bank of the new
hole) is moved into the bank pointed to by Wr,Bank at loca-
tion 610.

FIG. 7 is a logic diagram illustrating the state of a lookup
table of a logically addressed emulator single-port memory
array after a second update to the logic table in accordance
with embodiments of the disclosure. Before the second
update is applied to table 430, the state of table 430 is as
illustrated in FIG. 6. In order for the second update of the table
to be initiated, two commands for concurrent access to the
emulator single-port memory array are received that impli-
cate the same memory bank. In the example, the first com-
mand is initiated for reading from the implicated bank, and a
second command is initiated for concurrently writing data to
a “new” physical location. Accordingly, the table is to be
updated to logically point to the “new” physical location

A “swap” operation is also used in performing the second
update of the lookup table. The pointer to the current hole and
the pointer to the Phy Wr,Bank are swapped by such that the
physical location holding the data just read becomes the new
hole. Thus, a table write operation moves the value of
PhyWr,Bank (e.g., “1,” which is the physical bank of the
newly stored data and the “old” hole), into “HoleBank™ at
location 720 and the value of the PhyHoleBank (e.g., “k-2,”
which is the physical bank of the new hole) is moved into the
bank pointed to by Wr,Bank at location 710. Location 730
remains undisturbed as the bank “1” was not implicated as a
logical address in the received memory commands that initi-
ated the second lookup table update.

FIG. 8 is a timing diagram that illustrates access cycles of
a logically addressed multiport memory emulator in accor-
dance with embodiments of the disclosure. Waveforms 800
include a first cycle 802 and a second cycle 804, wherein each
cycle has a first portion and a second portion. Generally, three
operations performed during the first cycle 802 and a second
cycle 804 include the functions of a “lookup table read and
process,” “lookup table write” (e.g., for updating the lookup
table), and “main memory read/write.”

Waveform 820 illustrates a timing of the functions when
relatively slower clock speeds are encountered in an applica-
tion of the multiport memory emulator. Waveform 820 illus-
trates the “lookup table read and process™ function occurs
during the first portion of the first cycle 802, the “lookup table
write” function occurs during the second portion of the first
cycle 802, and the “main memory read/write” function occurs
during the second cycle 804.

Waveform 830 illustrates a timing of the functions when
relatively higher clock speeds are encountered in an applica-
tion of the multiport memory emulator (and tighter timing
requirements for the first cycle are encountered). Waveform
830 illustrates the “lookup table read and process™ function

30

40

45

55

10

occurs during the first cycle 802, the “lookup table write”
function occurs concurrently with the “main memory read/
write” function during the second cycle 804. Thus, an opera-
tion clock cycle includes the first cycle 802 and the second
cycle 804 and is the effective sustainable rate at which at least
one memory operation can be performed.

FIG. 9 is alogic diagram illustrating the physical banks and
an encoded data bank of a single-port memory of a multiport
memory emulator for simultaneously processing parallel read
operations from the same bank in accordance with embodi-
ments of the disclosure. Encoded memory system 900 is used
to form an array of memory that includes a main memory 910
and an encoded data memory bank 920. The memory array is
arranged as rows and memory banks, where each memory
bank has an associated bank address and is arranged to physi-
cally store one word from each row. Likewise each row has an
associated row address and is arranged to physically store one
word from each memory bank. The memory array includes
encoded data memory bank 920 that is arranged to provide
read and write storage for physically storing an encoded
representation of the data for each row of words in each
memory bank.

Main memory 910 includes a total of “k™ banks, where the
main memory 910 includes a first bank 912 of single-port
memories SP(0), intermediate banks of single-port memories
(not shown for clarity of illustration), and a terminal bank 914
of single-port memories SP(k-1).

Encoded data memory bank 920 includes a single bank 922
of single-port memories D, through DO0,,_,, where “n” is the
number of rows. The single bank 922 of single-port memories
SP(k) is organized in a similar fashion to the banks of main
memory 910.

Banks 912, 914, and 922 (for example) are organized as
including words (where each word is illustrated as a rectan-
gular cell) that each include a series of single-port memories
(e.g., bitcells) that is “m” bits long. For example, a word can
be abyte, 16-, 32-, 64-bit word, or any other length of single-
port memories that is suited for an application and processor
data width. Accordingly, each word in a memory bank is used
to store, for example, a data operand associated with one of
the received memory commands.

Each bank 912, 914, or 922 (for example) includes an “n”
number of the words (where each bank is illustrated as a
vertical column). Thus the number of single-port memories in
a bank is nxm, the number of single-port memories in the
main memory 910 is nxmxk, and the number of single-port
memories in the main memory 910 and the encoded data
memory bank 920 is nxmx]. (In three-or-more-port memo-
ries, additional auxiliary banks are used, as described above.)

The data stored in the encoded data memory bank 922 is an
encoded value encoded using Eq. 1 for each stored memory
element M, , in a row, where “y” is a row number and “x” is
abank number and function “f” is a function described as Eq.
3 below:

Dy:f(MOylMly ----- Mk—ly) (6]

A stored memory element M, is determined (without actu-
ally reading the stored value for the referenced data element
in main memory 910) by using Eq. 2 as an inverse function of
the data stored in the set of data elements in a row (wherein the
set excludes the referenced data element) and the encoded
data stored in the encoded data memory bank 920.

_p-1
M, = (Mo, My, ..., Mty Motygr -+ My,

@

The inverse function “f~!” and the function “f” are both the
exclusive-OR (XOR) function as described in Eq. 3:

US 9,158,683 B2

11
F1=® &)

Use of the XOR function avoids using, for example, different
functions such as addition to determine an encoded word for
row data, and subtraction (as the inverse function) to decode
the decoded word to determine a word in the row (without
having to read the row element directly). The wider operands
and wider adders/subtracters (and the corresponding
increases in layout area and power consumption for imple-
mentation) are also avoided by using the XOR function for
both the coding and decoding functions.

Accordingly, XOR encoding logic (XOR ENC LOGIC)
970 unit is used for both coding and decoding for read oper-
ands. XOR encoding logic unit 970 unit performs an encod-
ing operation when storing information in encoded data
memory bank 922. XOR encoding logic unit 970 unit per-
forms a decoding operation when determining a second read
operand when parallel (e.g., concurrent) read commands are
received.

In operation, each write to the data contents of main
memory 910 of physical banks 900 results in an encoding
operation of which the results are stored in the encoded data
memory 920. For example, a write command 930 for writing
a “d2” operand to a memory location addressed by row “r7”
and bank “b5” results in a read operation 940 where the
present (e.g., current) data operand “d1” is read from the row
“r7” and bank “b5” address and a read operation 950 where
the data operand “d4” is read from row “r7” of the encoded
data memory bank 922.

XOR encoding logic unit 970 unit performs an encoding
operation on data operands when storing information in
encoded data memory bank 922. For example, a previously (if
any) encoded “d4” operand is read from row “r7” in encoded
data memory bank 922 in a read operation 950. XOR encod-
ing logic unit 970 unit performs an encoding operation by
performing the XOR operation on data operands “d1,” “d2,”
and “d4.” The result of the XOR operation is written back to
the row “r7” memory location in encoded data memory bank
922 during write operation 960.

FIG. 10 is a timing diagram that illustrates the memory
operations of FIG. 9 in accordance with embodiments of the
disclosure. Waveform diagram 1000 illustrates a waveform
1020 having a first cycle 1002, a second cycle 1004, and a
third cycle 1006. Waveform 1020 illustrates a “memory read
[WrRow(a,j)]” operation (cf. operation 940) occurs during
the first cycle 1002, where “a” is the selected bank and “j” is
the selected row number. Likewise “encoded memory read
[WrRow(j)]” operation (cf. operation 950) occurs during the
first cycle 1002, where “j” is the selected row number.

During the second cycle 1004, waveform 1020 illustrates
the “memory write[WrRow(a,j)]” operation (cf. operation
930) occurs during the first portion of the second cycle 1004.
Likewise “encoded memory write[WrRow(j)]” operation (cf.
operation 960) occurs during the second cycle 1004, where
“J” is the selected row number. Because the XOR operation
occurs during the second cycle 1004, the single-ports of each
memory word are modified to perform a “pre-read” operation
so as to make the operand to be written (cf. “d1” of the
example in FIG. 9) available as an input to the XOR operation
during a first portion of cycle 1004. During a second portion
of cycle 1004, the result of the XOR operation (which relies
on the operands retrieved from the two memory read opera-
tions in cycle 1004 and the previously “pre-read” operand to
be written into main memory) is written into the encoded
memory.

The WR(a,j) operation (that is initiated at the beginning of
the first cycle 1002) is completed before the end of the second

10

15

20

25

30

35

40

45

50

55

60

65

12

cycle 1004. The WR(b,1) operation (which is the next write
operation having different operands and addresses) is begun
atthe start of the third cycle 1006. Thus the WR(a,j) operation
is completed in two cycles with no overlap with a following
consecutive third cycle. Thus, an operation clock cycle
includes the first cycle 1002 and the second cycle 1004 and is
the effective sustainable rate at which at least one memory
operation can be performed

FIG. 11 is a logic diagram illustrating the physical banks
and an encoded data bank of a single-port memory of another
multiport memory emulator for simultaneously processing
parallel read operations from the same bank in accordance
with embodiments of the disclosure. Encoded memory sys-
tem 1100 is used to form an array of memory that includes a
main memory 1110 and an encoded data memory bank 1120.
The memory array includes encoded data memory bank 1120
that is arranged to provide read and write storage for physi-
cally storing an encoded representation of the data for each
row of words in each memory bank.

Main memory 1110 includes atotal of “k” banks, where the
main memory 1110 includes a first bank 1112 of single-port
memories SP(0), intermediate banks of single-port memories
(not shown for clarity of illustration), and a terminal bank
1114 of single-port memories SP(k-1). Encoded data
memory bank 1120 includes a single bank 1122 of single-port
memories D, through DO,_,, where “n” is the number of
rows. The single bank 1122 of single-port memories SP(k) is
normally organized in a similar fashion to the banks of main
memory 1110. Banks 1112, 1114, and 1122 (for example) are
organized as including words (where each word is illustrated
as a rectangular cell) that each include a series of single-port
memories (e.g., bitcells) that is “m” bits long. Each bank
1112, 1114, or 1122 (for example) includes an “n” number of
the words (as illustrated in a vertical column).

The data stored in the encoded data memory bank 1122 is
an encoded value encoded as discussed above using Eq. 1. A
stored memory element M, , is determined by using Eq. 2 as
discussed above. The inverse function “f~'> and the function
“f” are both the exclusive-OR (XOR) function as described
above in Eq. 3.

Accordingly, XOR encoding logic unit 1170 unit performs
an encoding operation when storing information in encoded
data memory bank 1122. In operation, each write to the data
contents of main memory 1110 of physical banks 1100 results
in an encoding operation of which the results are stored in the
encoded data memory bank 1122. For example, a write com-
mand 1130 for writing a “d2” operand to a memory location
addressed by row “r7” and bank “b5” results in a read opera-
tion 1140 where the data operand “d*” (e.g., data from rows
“r7” of all banks—except the selected bank b5 in main
memory 1110) is read from the rows “r7” and bank “b5_*”
(e.g., all banks in main memory 1110 except for bank b5,
which obviates the need for a simultaneous read to the
addressed bank b5) address.

XOR encoding logic unit 1170 unit performs an encoding
operation on data operands when storing information in
encoded data memory bank 1120. For example, the encoded
information is stored in an associated row of the encoded data
memory 1120 so the data that would have otherwise been read
from a selected row and memory bank can be obtained by
decoding the data from the selected row of the encoded
memory bank 1120 (as described below with respect to FIG.
13 and F1G. 14). XOR encoding logic unit 1170 unit performs
an encoding operation by performing the XOR operation on
data operands “d2” (the data operand to be written to a
selected row and selected bank) and “d*” (the data operand
having each word of each selected row from banks other than

US 9,158,683 B2

13

the selected bank). The result of the XOR operation is written
back to the row “r7” memory location in encoded data
memory bank 1122 during write operation 1160. (Physical
bank system 1100 consumes more power than the encoded
memory system 900 described above, but has a throughput of
twice the throughput of the encoded memory system 900 as
discussed below with reference to FIG. 12.)

FIG. 12 is a timing diagram that illustrates the memory
operations of FIG. 11 in accordance with embodiments of the
disclosure. Waveform diagram 1200 illustrates a waveform
1220 having a first cycle 1202, a second cycle 1204, and a
third cycle 1206. Waveform 1220 illustrates a “memory write
[WrRow(a,j)]” operation (cf. operation 1140) occurs during
the first cycle 1202, where “a” is the selected bank and “j” is
the selected row number. Likewise “memory read] WrRow
(a_*j)]” operation (cf. operation 1140) occurs during the first
cycle 1202, where “a_*” is the set of banks that excludes bank
“a” and “j” is the selected row number.

During the second cycle 1204, waveform 1220 illustrates
the “memory write[WrRow(a,j)]” operation (cf. operation
1130) occurs during the first cycle 1202. Likewise “encoded
memory write[WrRow(j)]” operation (cf. operation 1160)
occurs during the second cycle 1204, where “j” is the selected
row number. Because the XOR operation occurs before the
end of the second cycle 1204, the single-ports of each
memory word are modified to perform a “pre-read” operation
so as to make the operand to be written (cf. “d2” of the
example in FIG. 11) available as an input to the XOR opera-
tion during a second portion of cycle 1202 or a first portion of
cycle 1204. During a second portion of cycle 1204, the result
of'the XOR operation (which relies on the operands retrieved
from the two memory read operations in cycle 1204 and the
previously “pre-read” operand to be written into main
memory) is written into the encoded memory.

The WR(a,j) operation (that is initiated at the beginning of
the first cycle 1202) is completed before the end of the second
cycle 1204. The WR(b,1) operation (which is the next write
operation having different operands and addresses) is begun
at the start of the second cycle 1206. Thus the WR(a,j) opera-
tion is a pipelined operation that is effectively completed
every cycle by performing the encoded memory write opera-
tion during a second cycle that overlaps with the first cycle of
a second operation. The WR(c,n) operation begins at the third
cycle 1206 and is completed by performing the third encoded
memory write operation during the fourth cycle (not shown).
Thus, an operation clock cycle includes the first cycle 1202
and the second cycle 1204 and is the effective sustainable rate
at which at least one memory operation can be performed.

FIG. 13 is a logic diagram illustrating the physical banks
and an encoded data bank of a single-port memory of another
multiport memory emulator for simultaneously processing
parallel read operations from the same bank in accordance
with embodiments of the disclosure. Encoded memory sys-
tem 1300 is used to form an array of memory that includes a
main memory 1310 and an encoded data memory bank 1320.
The memory array includes encoded data memory bank 1320
that is arranged to provide read and write storage for physi-
cally storing an encoded representation of the data for each
row of words in each memory bank.

Main memory 1310 includes a total of “k” banks, where the
main memory 1310 includes a first bank 1312 of single-port
memories SP(0), intermediate banks of single-port memories
(not shown for clarity of illustration), and a terminal bank
1314 of single-port memories SP(k-1). Encoded data
memory bank 1320 includes a single bank 1322 of single-port
memories D, through D0, ,, where “n” is the number of
rows. The single bank 1322 of single-port memories SP(k) is

25

40

45

14

normally organized in a similar fashion to the banks of main
memory 1310. Banks 1312, 1314, and 1322 (for example) are
organized as including words (where each word is illustrated
as a rectangular cell) that each include a series of single-port
memories (e.g., bitcells) that is “m” bits long. Each bank
1312, 1314, or 1322 (for example) includes an “n” number of
the words (as illustrated in a vertical column).

The data stored in the encoded data memory bank 1322 is
an encoded value encoded as discussed above using Eq. 1. A
stored memory element M, , is determined by using Eq. 2 as
discussed above. The inverse function “f~'* and the function
“f” are both the exclusive-OR (XOR) function as described
above in Eq. 3.

Accordingly, XOR decoding logic unit 1370 unit performs
a decoding operation (which is the same as the encoding
operation by operation of the inverse identity property of the
XOR function) when reading information from encoded data
memory bank 1322. In operation, each read from the data
contents of main memory 1310 of physical banks 1300 results
in a decoding operation of the results are stored in the encoded
data memory bank 1322. For example, a read command 1330
is received for reading a “d6” operand from a memory loca-
tion addressed by row “r2” and bank “b4” results in a read
operation 1340 where the data operand “d*” (e.g., data from
rows “r2” of all banks—except the selected bank b4 in main
memory 1310) is read from the rows “r2” and bank “b4_*”
(e.g., all banks in main memory 1310 except for bank b54
which obviates the need for a simultaneous read to the
addressed bank b4) address.

XOR decoding logic unit 1370 unit performs a decoding
operation on data operands when reading information from
encoded data memory 1320. For example, the encoded infor-
mation is stored in an associated row of the encoded data
memory bank 1322 so the data that would have otherwise
been read from a selected row and memory bank can be
obtained by decoding the data from the selected row of the
encoded memory bank 1320. XOR decoding logic unit 1370
unit performs a decoding operation by performing the XOR
operation on data operand “d*” (the data operand having each
word of each selected row from banks other than the selected
bank) retrieved during operation 1340 and the encoded
memory word “Dd” stored in the selected row of the encoded
memory bank 1322. The result of the XOR operation as the
result of the read operation as operand “d6” during read
operation 1380.

FIG. 14 is a timing diagram that illustrates the memory
operations of FIG. 13 in accordance with embodiments of the
disclosure. Waveform diagram 1400 illustrates a waveform
1420 having a first cycle 1402, a second cycle 1404, and a
third cycle 1406. Waveform 1420 illustrates a “memory read
[RdRow(a,j)]” operation occurs during the first cycle 1402,
where “a” is the selected bank and “” is the selected row
number. Likewise a “memory read[RdRow(a_* k)|” opera-
tion (cf. operation 1340) occurs during the first cycle 1402,
where “a_*” is the set of banks that excludes bank “a” and “j”
is the selected row number. (The “memory read[RdRow(a_*,
k)]” operation occurs in response to a second parallel read
from the same selected memory bank “a”.) Further, the
“encoded memory read[RdRow(k)]” operation (cf. operation
1360) occurs during the first cycle 1402, where “k” is the
selected row number.

When the memory read[RdRow(a,j)]” operation, the
“memory read[RdRow(a_*k)]|” operation, the “encoded
memory read[RdRow(k)]” operation, and the XOR operation
on the “d*” and the encoded memory word “d” operands
are performed during the first cycle 1402, the actual through-
put of memory bank system is two reads per cycle. For

US 9,158,683 B2

15

example, the RD(a,j) operation and the RD(a,k) operation are
both completed during the first cycle 1402. The RD(b,])
operation and the RD(b,m) operation are both completed
during the second cycle 1404. The RD(c,n) operation and the
RD(c,p) operation are both completed during the third cycle
1406. Thus, dual (e.g., overlapping, concurrent, and/or simul-
taneous) reads are achieved in one clock cycle.

FIG. 15 is a flow diagram illustrating a process for concur-
rently reading two ports of a logically addressed multiport
memory emulator in accordance with embodiments of the
disclosure. Process 1500 is initiated in operation 1510 when
the inputs Rd,;Row, Rd, Row, Rd,Bank, and Rd,Bank are
received in association with the two received memory com-
mands. In operation 1530, the physical bank addresses
(Rd, Bank, and Rd,Bank) are compared to determine whether
the same physical bank is implicated by both the first and the
second received read commands. If the same physical bank is
not implicated by both the first and the second received
memory command (NO), process flow continues with opera-
tion 1540. If the same physical bank is implicated by both the
first and the second received memory command (YES), pro-
cess flow continues with both operations 1550 and 1560.

In operation 1540, memory operations are performed using
differing banks. In the example, a first memory read operation
is performed by reading from Rd, Bank(Rd,Row) and a sec-
ond memory read operation is performed by reading from
Rd,Bank(Rd, Row). Process flow terminates until the next
two memory commands are received.

In operations 1550 and 1560, memory operations are (typi-
cally concurrently) performed using differing physical banks
(notwithstanding the fact that the same logical bank is impli-
cated by both received memory commands). Process flow
continues until operations of both operations 1550 and 1560
finishes, and the process flow terminates until the next two
memory commands are received. In operation 1550, a first
memory read operation is performed by reading from
Rd,Bank(Rd,Row). In operation 1560 an encoded memory
read operation is performed by reading from Rd,Bank_*(Rd,
Row) (where “Rd,Bank_* is the set of banks that excludes
Rd,Bank”), by reading from encoded memory(Rd, Row),
and by decoding the results of the operands that are obtained
from the from reads from the Rd,Bank(Rd, Row) and
encoded memory(Rd, Row) locations.

FIG. 16 is a logic diagram that illustrates a full dual read
and write architecture multiport memory emulator in accor-
dance with embodiments of the disclosure. Emulator 1600
includes encoded memory systems 1610, 1620, and 1630.
Each of the encoded memory systems 1610, 1620, and 1630
is similar to the encoded memory system 900 or 1100 and
1300 and is arranged to perform a read and a write operation
simultaneously, as well as perform dual read operations
simultaneously (as discussed above with reference to FIG.
15). Thus emulator 1600 includes a main memory (e.g., main
memory 310) having a physical address space that is, for
example, based on the number of rows and banks in the
memory, as well as secondary memory that (when full paral-
lel read and/or write operations are supported) includes the
auxiliary memory (e.g., aux memory 320) and encoded
memory (e.g., encoded memory data 920).

A process logic 1668 is arranged to perform the encoding
and decoding memory functions of each encoded memory
system 1610, 1620, 1630, and 1660 (“level one” or “L.17),
whereas the process logic 1670 is arranged to perform the
encoding and decoding memory functions of emulator 1600
(“level two” or “L.2”). At level one, each of the encoded
memory system 1610, 1620, and 1630 is arranged as a
memory bank in similar fashion to the memory banks as

10

20

25

30

35

40

45

55

60

16

discussed above with reference to FIG. 3. Atlevel two, each of
the encoded memory banks forms a memory bank of a logi-
cally addressed memory emulator as discussed above (with
reference to FIG. 2 for example). In like manner, auxiliary
bank (AUX) 1640 is arranged as an encoded memory system
1660 in similar fashion to encoded memory systems 1610,
1620 and, 1630. Lookup table (LOOK) 1650 is similar to
lookup table 400 and similarly is arranged to translate logical
addresses into physical addresses as well as maintaining the
bank position of the “hole” in a row as described above.

Emulator 1600 is arranged to perform a read and a write
operation simultaneously, to perform dual write operations
simultaneously, and to perform dual read operations simulta-
neously. For example, each of the level-one encoded memory
bank supports simultaneous dual read operations as well as
simultaneous read and write operations, whereas the level-
two logically addressed memory emulator supports the
simultaneous read and write operations as well as simulta-
neous write operations. Thus, a full dual read and write archi-
tecture is achieved.

When dual write operations are performed simultaneously,
the “hole” appears to jump across a “block” (e.g., encoded
memory system) boundary because the simultaneous write
operations are performed at the level-two logically addressed
a memory emulator. For example, hole 1612 appears to move
to hole 1622 during a first pair of simultaneous write opera-
tions, whereas hole 1624 appears to move to hole 1634 during
a second pair of simultaneous write operations. Accordingly,
each hole moves to the same bank number and the same row
number in a different block. Accordingly, lookup table 1650
is arranged to also maintain block information that is associ-
ated with the hole.

FIG. 17 is a logic diagram illustrating a lookup table 1700
for a level-two logically addressed emulator single-port
memory in accordance with embodiments of the disclosure.
Lookup table 1700 includes maps 1710, 1720, and 1730,
wherein a total of 4 maps are arranged, wherein “j” is the
number of banks at level one. Each map (e.g., map 1720) has
“m” number of rows, which is the number of words per
level-one bank. Each map also has “k” number of columns,
which is the number of blocks at level two. Each map also has
a bank hole column (e.g., bank hole column 1712, 1722, and
1732) such that each map has “k+1” columns.

FIG. 18 is a logic diagram that illustrates simultaneous read
operations in a full dual read and write architecture multiport
memory emulator in accordance with embodiments of the
disclosure. Emulator 1800 includes encoded memory sys-
tems 1810, 1820, and 1830 that are arranged to form a level-
two logically addressed multi-port memory emulator. Emu-
lator 1800 also includes an auxiliary memory 1840 that is
arranged as encoded memory system 1860, lookup table
1850, and process logic 1870.

As illustrated, both the read operation “R1” and read opera-
tion “R2” are directed at the same level-one bank (encoded
memory system 1820) in the same level-two block. For
example, read operation “R1” is accomplished using a read
operation to the indicated address, whereas read operation
“R2” is accomplished using parallel access from all banks
(including the XOR bank) except the bank to which the “R1”
read operation is directed. Thus, parallel reads are accom-
plished because the level-one encoded memory system 1820
supports the simultaneous read operations.

FIG. 19 is a logic diagram that illustrates simultaneous
write operations in a full dual read and write architecture
multiport memory emulator in accordance with embodiments
of the disclosure. Emulator 1900 includes encoded memory
systems 1910, 1920, and 1930 that are arranged to form a

US 9,158,683 B2

17

level-two logically addressed multi-port memory emulator.
Emulator 1900 also includes an auxiliary memory 1940 that
is arranged as encoded memory system 1960, lookup table
1950, and process logic 1970.

As illustrated, the write operation “W1” is directed to
location 1924 while write operation “W2” is directed to loca-
tion 1922. Both locations 1924 and 1922 are included in the
same level-one bank (encoded memory system 1920) of the
same level-two block. Write operation “W1” is accomplished
by directing a write operation to the indicated address (1924)
and also by updating the XOR bank of encoded memory
system 1920 via process logic 1970 (which provides level-
two operations). The write operation “W2” is accomplished
by directing the operand to be written to the (current) corre-
sponding hole at location 1932, which is in the level-one bank
1 of level-two block “k-1" (e.g., encoded memory system
1930). Also write operation “W2” also provides encoding
updates to the XOR block in the level-two block “k-1" (e.g.,
in encoded memory system 1930. Thus, parallel writes are
accomplished because the level-two logically addressed por-
tion of multi-port memory emulator 1900 supports the simul-
taneous write operations.

FIG. 20 is a flow diagram illustrating a process for concur-
rently reading and writing two ports of a logically addressed
multiport memory emulator in accordance with embodiments
of the disclosure. Process 2000 is initiated in operation 2010
when the inputs RdRow, WrRow, RdBank, WrBank,
RdBlock, and WrBlock are received in association with the
two received memory commands. In operation 2020, a
lookup table read operation from the table map is used to
determine (e.g., fetch) the value of PhyRdBlock in response
to RdBank(RdRow) and to determine the value of PhyWr-
Block in response to WrBank(WrRow) and the value of Phy-
HoleBlock in response to WrBank(WrRow). (The PhyHole-
Block is the current physical location of the hole for the
selected block).

In operation 2030, the physical block addresses (PhyRd-
Block and PhyWrBlock) are compared to determine whether
the same physical bank is implicated by both the first and the
second received read commands. If the same physical bank is
not implicated by both the first and the second received
memory command, process flow continues with operation
2034 (XORWrite) and operation 2032 (MemOP). In opera-
tion 2034, a memory read operation from all write banks “_*”
(e.g., except WrBank) of Phy WrBlock is performed as well as
an XOR update (using the returned operands) is performed
and stored within Phy WrBlock. In operation 2032 a memory
read operation from PhyRdBlock is performed as well as a
memory write operation into PhyRdBlock is performed. Pro-
cess flow terminates until the next two memory commands
are received.

In operation 2040, the physical block addresses (PhyRd-
Block and PhyWrBlock) are compared to determine whether
the same physical bank is implicated by both the first and the
second received read commands. If the same physical bank is
implicated by both the first and the second received memory
command, process flow continues with operation 2042. In
operation 2042, if the same physical address is not implicated
by both the row to be read (RdRow) and the row to be written
(WrRow), process flow continues with operations 2044,
2046, and 2048. If the same physical address is implicated by
both the row to be read (RdRow) and the row to be written
(WrRow), process flow continues with both operations 2050
and 2052.

In operation 2044, a memory read operation from PhyRd-
Block is performed as well as a memory write operation into
PhyHoleBlock is performed. In operation 2046, a table write

10

20

25

30

35

40

45

50

55

60

65

18

operation is performed where PhyWrBlock is written in the
Hole Block and the PhyHoleBlock is written into the Write
Block. In operation 2048, a memory read operation from all
write banks “_*” (except WrBank) of PhyHoleBlock is per-
formed as well as an XOR update is performed (using the
operands returned by the memory read operation “_*") and
stored within PhyHoleBlock. Process flow terminates until
the next two memory commands are received. In operation
2050, a memory read operation from PhyRdBlock is per-
formed as well as a memory write operation from PhyWr-
Block is performed. In operation 2052, a memory read opera-
tion from all write banks “_*” (except WrBank) of
PhyWrBlock is performed as well as an XOR update is per-
formed and stored within Phy WrBlock. Process flow termi-
nates until the next two memory commands are received.

FIG. 21 is a flow diagram illustrating a process for concur-
rently reading two ports of a logically addressed multiport
memory emulator in accordance with embodiments of the
disclosure. Process 2100 is initiated in operation 2110 when
the inputs Rd,Row, Rd, Row, Rd, Bank, Rd,Bank, Rd, Block,
and Rd,Block are received in association with the two
received memory commands. In operation 2120, lookup table
read operations from the table map are used to determine
(e.g., fetch) the value of PhyRd,Block in response to
Rd,Bank(Rd,Row) and to determine the value of
PhyRd,Block in response to Rd,Bank(Rd, Row).

In operation 2130, the physical block addresses
(PhyRd, Block and PhyRd,Block) are compared to determine
whether the same physical bank is implicated by both the first
and the second received read commands. If the same physical
bank is not implicated by both the first and the second
received memory command, process flow continues with
operation 2132 In operation 2132 a memory read operation
from PhyRd,Block is performed as well a memory read
operation from PhyRd,Block is performed. Process flow ter-
minates until the next two memory commands are received.

In operation 2140, the physical block addresses
(PhyRd, Block and PhyRd,Block) are compared to determine
whether the same physical bank is implicated by both the first
and the second received read commands. If the same physical
bank is implicated by both the first and the second received
memory command, process flow continues with operation
2142. In operation 2142, if the same physical address is not
implicated by both rows to be read (Rd,Row and Rd, Row),
process flow continues with operation 2144. If the same
physical address is implicated by both rows to be read
(Rd,Row and Rd, Row), process flow continues with both
operations 2150 and 2152.

Inoperation 2144, amemory read operation from Rd, Bank
of PhyRd,Block is performed as well as a memory read
operation from Rd,Bank of PhyRd,Block is performed. Pro-
cess flow terminates until the next two memory commands
are received. In operation 2150, a memory read operation
from Rd,Bank of PhyRd, Block is performed. In operation
2152, a memory read operation from all Rd,Bank_* of
PhyRd,Block is performed as well as an XOR update is
performed by reading from PhyRd,Block and the XOR bank.
Process flow terminates until the next two memory com-
mands are received.

FIG. 22 is a flow diagram illustrating a process for concur-
rently writing two ports of a logically addressed multiport
memory emulator in accordance with embodiments of the
disclosure. Process 2200 is initiated in operation 2210 when
the inputs Wr,Row, Wr, Row, Wr,Bank, Wr,Bank,
Wr,Block, and Wr,Block are received in association with the
two received memory commands. In operation 2220, a
lookup table read operation from the table map is used to

US 9,158,683 B2

19

determine (e.g., fetch) the value of Phy Wr,Block in response
to Wr;Bank(Wr,Row) and to determine the value of
PhyWr,Block in response to Wr,Bank(Wr, Row) and the
value of Phy,HoleBlock in response to Wr,Bank(Wr, Row).
(The Phy,HoleBlock is the current physical location of the
hole for the selected block).

In operation 2230, the physical block addresses
(PhyWr,Block and PhyWr,Block) are compared to deter-
mine whether the same physical bank is implicated by both
the first and the second received read commands. If the same
physical bank is not implicated by both the first and the
second received memory command, process flow continues
with operation 2234 (XORWrite) and operation 2232 (Me-
mOP). In operation 2234, a memory read operation from all
write banks “_*” of PhyWr,Block is performed as well as
XOR updates (using the returned operands) are respectively
performed and stored within PhyWr,Block. Likewise a
memory read operation from all write banks “_*” of
PhyWr,Block is performed as well as XOR updates (using
the returned operands) are respectively performed and stored
and PhyWr,Block. In operation 2232 a memory write opera-
tion into PhyWr,Block is performed as well as a memory
write operation into Phy Wr,Block is performed. Process flow
terminates until the next two memory commands are
received.

In operation 2240, the physical block addresses
(PhyWr,Block and PhyWr,Block) are compared to deter-
mine whether the same physical bank is implicated by both
the first and the second received read commands. If the same
physical bank is implicated by both the first and the second
received memory command, process flow continues with
operation 2242. In operation 2242, if the same physical
address is not implicated by both rows to be written (Wr, Row
and Wr Row), process flow continues with operations 2244,
2246, 2248, and 2250. If the same physical address is impli-
cated by both the row to be read (WrRow) and the row to be
written (WrRow), process flow continues with both opera-
tions 2252 and 2254.

In operation 2244, a memory write operation into
PhyWr, Block is performed as well as a memory write opera-
tion into PhyHole,Block is performed. In operation 2246, a
table-write operation is performed where PhyWr,Block is
written in the Hole,Block and the PhyHole,Block is written
into the Wr,Block. In operation 2248, a memory read opera-
tion from “_*” of PhyWr, Block is performed as well as an
XOR update is performed (using the operands returned by the
memory read operation “_*’) and stored within
PhyWr Block. In operation 2250, a memory read operation
from “_*” of PhyHole,Block is performed as well as an XOR
update is performed (using the operands returned by the
memory read operation “_*’) and stored within
PhyHole,Block. Process flow terminates until the next two
memory commands are received.

In operation 2252, a memory write operation into
PhyWr Block is performed as well as a memory write opera-
tion into PhyWr,Block is performed. In operation 2254, a
memory read operation from “_*” of PhyWr,Block is per-
formed as well as an XOR update is performed and stored
within PhyWr,Block. Process flow terminates until the next
two memory commands are received.

The various embodiments described above are provided by
way of illustration only and should not be construed to limit
the claims attached hereto. Those skilled in the art will readily
recognize various modifications and changes that could be
made without following the example embodiments and appli-
cations illustrated and described herein, and without depart-
ing from the true spirit and scope of the following claims.

25

40

45

50

60

20

What is claimed is:

1. A multiport memory emulator device, comprising:

an input buffer that is arranged to receive a first and a
second memory command, wherein each command is
respectively associated with a logical address that
includes a row address portion and a bank address por-
tion;

a memory array of bitcells that is arranged as rows and
memory banks, wherein each memory bank has an asso-
ciated bank address and is arranged to physically store
one word from each row, wherein each row has an asso-
ciated row address and is arranged to physically store
one word from each memory bank, and wherein the
memory array includes an auxiliary memory bank that is
arranged to provide a bitcell for physically storing an
additional word for each row; and

a lookup table that is arranged to determine whether the
bank address portion of the first memory command is
equal to the bank address portion of the second memory
command, is arranged to translate the bank address por-
tion of each of the first and second memory commands
respectively into a first and second physical bank
address, and is arranged to, in response to the determi-
nation that the bank address portions are equal, assign a
bank address of a bank that is currently unused to the
second physical bank address, and designate the bank
associated with the first physical bank address as a cur-
rently unused bank for subsequently received memory
commands.

2. The device of claim 1, wherein each word is a series of

one or more single-port bitcells.

3. The device of claim 1, wherein each physical address of
the non-auxiliary banks is respectively initialized in the
lookup table using the logical addresses for each of the non-
auxiliary banks.

4. The device of claim 1, wherein the bank address portion
of the received memory command is arranged to uniquely
address each of the non-auxiliary banks.

5. The device of claim 1, comprising an output buffer that
is arranged to output data from the selected physically
addressed word when at least one of the first and second
memory commands is a read command.

6. The device of claim 1, comprising a pipeline stage that is
arranged to assert the row portions of the first and second
memory commands and assert the first and second physical
bank addresses.

7. The device of claim 6, wherein asserted row portions of
the first and second memory commands and the asserted first
and second physical bank addresses are provided to the
memory array.

8. The device of claim 7, wherein the memory array is
arranged to concurrently process the first and second memory
commands in response to the asserted row portions of the first
and second memory commands and the asserted first and
second physical bank addresses.

9. The device of claim 8, wherein the first memory com-
mand is a read command and the second memory command is
a write command.

10. The device of claim 1, wherein first and second
memory operations are executed concurrently for the
received memory commands, wherein each of the first and
second memory operations is processed using a lookup
operation that occurs during a first cycle of the two memory
operations, and using a main memory read and/or write
operation that occurs during the second cycle of the two
memory operations.

US 9,158,683 B2

21

11. The device of claim 10, wherein the second memory
operation is processed using a lookup table write operation
that occurs after the lookup operation, wherein the lookup
operation occurs during a first portion of the first cycle or
occurs during the first cycle of the first and second memory
operations.

12. A multiport memory emulator device, comprising:

an input port that is arranged to receive a first and a second

memory command, wherein each command is respec-
tively associated with an address and a command type;

a main memory array of bitcells that is arranged as rows

and memory banks, wherein each bitcell is a single port
bitcell, and wherein the main memory array includes a
physical address range that is arranged to be addressed
using the addresses respectively associated with the first
and second memory commands;

a secondary memory having a physical address space; and

aprocess logic unit that is arranged to process the first and

second memory commands within one operation clock
cycle by storing and retrieving data from both the main
memory array and the secondary memory array.

13. The device of claim 12, comprising an output buffer
that is arranged to output data in response to data stored both
the main memory array and the secondary memory array
when at least one of the command types of the first and second
memory commands is a read command.

14. The device of claim 13, wherein the command types the
first and second memory commands are both read command
types, are both write command types, or are read and write
command types.

15. The device of claim 14, wherein the secondary memory
is arranged with auxiliary memory that is logically addressed
when both command types are write command types.

16. The device of claim 15, wherein the secondary memory
is arranged with an encoded memory bank that is encoded and

5

10

20

25

30

22

decoded using an exclusive-OR (XOR) function when both
command types are read command types.

17. A method for emulating multiport memory, compris-
ing:

receiving a first and a second memory command, wherein

each command is respectively associated with an
address and a command type;

and wherein a main memory includes a physical address

range that is arranged to address each word of bitcells in
a main memory array that is arranged as rows and
memory banks, wherein the words are addressed using
the addresses respectively associated with the first and
second memory commands;

using a secondary memory having a physical address space

to provide encoded data for determining the contents of
a word when both command types are read command
types; and

using the secondary memory to provide a word for physi-

cally storing an additional word and translating a logical
address into a physical address for each row of the main
memory when both the command types are write com-
mand types.

18. The method of claim 17, wherein the first and second
memory commands are processed within one operation clock
cycle by storing and retrieving data from both the main
memory array and the secondary memory array.

19. The method of claim 17, wherein the encoded data is
encoded and stored using an exclusive-OR function (XOR)
and retrieved and decoded using the XOR function.

20. The method of claim 17, wherein the secondary
memory includes a memory map to maintain the physical
memory address of the open memory word in a row that is not
currently associated with a logical address.

#* #* #* #* #*

